Be better WPF / MvvmLight developer in 2018

It is 2018, the time of .NET Core, x-plat, clouds, microservices, blockchain and shine of JavaScript. But, there are guys, like me, who still maintain and sometimes develop classic  .NET desktop applications for Windows.

I am not a WPF expert, but I spent a couple of days reviewing, testing and fixing one of our desktop apps and I definitely learned a couple of new tips & tricks that worth to share with other non-experts.

Part #1: General Tips

Tip #1.1: Choose right library/framework

It happened that we use MvvmLight. The library is lightweight and already exists for almost 10 years, MVVM pattern is well-known and lets us keep solution code reasonably well-structured.

But this is definitely not the only choice, there are many other different-purpose libraries and frameworks that may suit you better, especially if you do green-field development. So choose carefully:

Tip #1.2: Distribute using Squirrel.Windows

Installers always were hard, the seamless auto-update process is even harder. But, today, we have the solution that works for simple user-oriented applications that don’t do crazy things during installation. This solution is Squirrel.Windows – an installation and update framework for Windows desktop apps, designed for C# apps.

It’s definitely worth to learn it once and use it for all apps that you develop.

Tip #1.3: Think about monitoring

Aggregated analytics from user’s machine is priceless for successful apps. There are plenty amount of data that can help you deliver better apps:

  1. Crash reports
  2. Application version distribution
  3. User’s count / Active user
  4. Performance / Integrations tracking
  5. Custom events / Logs

It is not always possible to collect all kinds of data from user’s machine, but do it if you can. There are a couple of services that may help you, like Application Insights, HockeyApp and others.

Tip #1.4: Use the full power of IDE

Learn tools that MS baked for you and use them

Tip #1.5: Debug Data Binding Issues

When data bindings do not play nice you have a possibility to debug. It is not super intuitive, but there are ways to step into the binding process to better figure out what is actually going on. Check this nice article from Mike Woelmer – How To Debug Data Binding Issues in WPF 

Part #2: MVVM Light – Code Tips

C# quickly evolves over time, more and more features become available to us. It is not always obvious how to use new async code with an old API.

Tip #2.1: “New” INotifyPropertyChanged syntax

I think almost any WPF developer knows how to implement INotifyPropertyChanged interface

public class MyViewModel : INotifyPropertyChanged
{
    private string _isBusy;
    public event PropertyChangedEventHandler PropertyChanged;

    public MyViewModel() {}

    public string IsBusy
    {
        get { return _isBusy; }
        set
        {
            _isBusy = value;
            OnPropertyChanged("IsBusy");
        }
    }

    protected void OnPropertyChanged(string name)
    {
        if (PropertyChanged == null)
            return;
        PropertyChanged(this,
            new PropertyChangedEventArgs(name))
    }
}

Using MVVM Light you can do way shorter (such syntax probably exists for a while, but I discovered it only recently)

public class MyViewModel : ViewModelBase
{
    public MyViewModel() {}

    private string _isBusy;
    public string IsBusy
    {
        get => _isBusy;
        set { Set(() => IsBusy, ref _isBusy, value) }
    }
}

All property change events will happen under the hood of Set method. Also, Set method returns true when the value changed so you can use it to do additional actions on property change.

private string _isBusy;
public string IsBusy
{
    get => _isBusy;
    set {
        if (Set(() => IsBusy, ref _isBusy, value)) {
        // Do whatever you need on update
        }
    }
}

Update from Chris Jobson:

There are overloads that allow us to omit first argument – propertyExpression. In this case [CallerMemberName] will be used as the property name, so the code will be even shorter. Not bad for 2018 =)

private string _isBusy;
public string IsBusy
{
    get => _isBusy;
    set => Set(ref _isBusy, value);
}

Tip #2.2: Async to Action glue

C# async was designed to be better compatible with old APIs and consume Action or delegate. Also, it is one of the reasons why async void exists in the language, but we should always use async Task in our own code.

Two following casts are valid

Action task = async () => await Task.Yield();
Func task2 = async () => await Task.Yield();

Read “Do async lambdas return Tasks?” to better understand what’s actually going on here. It means that you can pass your async method as Action to RelayCommand.

new RelayCommand(async() => await Download());

TBH, you should use it like this (explanation in the next tip)

new RelayCommand(async() => await Download(), keepTargetAlive:true);

Tip #2.3: Do not use lambdas with RelayCommand

Lambdas as a parameter for RelayCommand is a bad idea unless you know what can go wrong and use the latest version of MvvmLight.

Actually, I have spent almost 2 days of my life to figure out why at some point of time several buttons in our application stopped working, even though all commands defined in the ViewModel are read-only and assigned once in the constructor.

We had simple commands that do some trivial actions on click, so the developer decided to use lambda in command declaration to save space and simplify the code.

new RelayCommand(() => IsBusy = true);

The code looks simple and correct, but RelayCommand under the hood stores only weak reference to the delegate and any GC cycle can recycle local lambda function. So at some point in time (after next cycle of GC) RelayCommand may not find delegate to call and nothing will happen after the click. For a deeper analysis of this behavior, you can read “RelayCommands and WeakFuncs“.

At the time of writing this post, the issues in MvvmLight library were fixed (Using RelayCommand and Messenger (and WeakAction) with closures) and released in version 5.4.1. But fix does not apply by default.

If you really want to use lambdas with RelayCommandMessenger you should manually set keepTargetAlive:true (false by default), but probably better do not use them at all.

new RelayCommand(() => IsBusy = true, keepTargetAlive:true);

P.S. Worth to mention that Laurent Bugnion has the course on Pluralsight “MVVM Light Toolkit Fundamentals” that provides detailed MVVM Light overview.

ASP.NET MVC with Simple Windows Authorization

A lot of enterprises use Active Directory (AD) to manage user accounts and Security Groups to manage access to resources.

So (I think) that there is a common task when you want to create some internal resource that will provide certain functionality for your team, but you do not want to expose your data outside. We can easily enable Windows authentication, however usually we also need to add an authorization(limit access to certain groups)

The task is simple, but I do not know why it is so hard to find manual for this. Steps are as follows:

  • Enable Windows authentication in web.config
  • Add WindowsTokenRoleProvider that transforms all Security Groups to ASP.NET Roles
  • Configure Authorization rules based on roles
  • Disable anonymous authentication for IIS Express.

Changes in Web.config:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  ...
  <system.web>
    ...
    <authentication mode="Windows" />
    <authorization>
      <allow roles="DOMAIN\MyTeam" />
      <deny users="*"/>
    </authorization>
    <roleManager cacheRolesInCookie="false" defaultProvider="WindowsProvider" enabled="true">
      <providers>
        <clear />
        <add name="WindowsProvider" type="System.Web.Security.WindowsTokenRoleProvider" applicationName="/" />
      </providers>
    </roleManager>
  </system.web>
  ...
</configuration>

Changes in project file:

<Project ToolsVersion="12.0" DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
  <PropertyGroup>
    <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
    <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
    ...
    <TargetFrameworkVersion>v4.6.1</TargetFrameworkVersion>
    <UseIISExpress>true</UseIISExpress>
    <IISExpressSSLPort />
    <IISExpressAnonymousAuthentication>disabled</IISExpressAnonymousAuthentication>
    <IISExpressWindowsAuthentication>enabled</IISExpressWindowsAuthentication>
    <IISExpressUseClassicPipelineMode />
    <UseGlobalApplicationHostFile />
    ...
  </PropertyGroup>
  ...

P.S. You can use security groups to restrict access to Controllers/Views based on the roles (AuthorizeAttribute)

Stanford CoreNLP is available on NuGet for F#/C# devs

Update (2014, January 3): Links and/or samples in this post might be outdated. The latest version of samples are available on new Stanford.NLP.NET site.

nlp-logo-navbar

Stanford CoreNLP provides a set of natural language analysis tools which can take raw English language text input and give the base forms of words, their parts of speech, whether they are names of companies, people, etc., normalize dates, times, and numeric quantities, and mark up the structure of sentences in terms of phrases and word dependencies, and indicate which noun phrases refer to the same entities. Stanford CoreNLP is an integrated framework, which make it very easy to apply a bunch of language analysis tools to a piece of text. Starting from plain text, you can run all the tools on it with just two lines of code. Its analyses provide the foundational building blocks for higher-level and domain-specific text understanding applications.

Stanford CoreNLP integrates all Stanford NLP tools, including the part-of-speech (POS) taggerthe named entity recognizer (NER)the parser, and the coreference resolution system, and provides model files for analysis of English. The goal of this project is to enable people to quickly and painlessly get complete linguistic annotations of natural language texts. It is designed to be highly flexible and extensible. With a single option you can change which tools should be enabled and which should be disabled.

Stanford CoreNLP is here and available on NuGet. It is probably the most powerful package from whole The Stanford NLP Group software packages. Please, read usage overview on Stanford CoreNLP home page to understand what it can do, how you can configure an annotation pipeline, what steps are available for you, what models you need to have and so on.

I want to say thank you to Anonymous 😉 and @OneFrameLink for their contribution and stimulating me to finish this work.

Please follow next steps to get started:

Before using Stanford CoreNLP, we need to define and specify annotation pipeline. For example, annotators = tokenize, ssplit, pos, lemma, ner, parse, dcoref.

The next thing we need to do is to create StanfordCoreNLP pipeline. But to instantiate a pipeline, we need to specify all required properties or at least paths to all models used by pipeline that are specified in annotators string. Before starting samples, let’s define some helper function that will be used across all source code pieces: jarRoot is a path to folder where we extracted files from stanford-corenlp-3.2.0-models.jar; modelsRoot is a path to folder with all models files; ‘!’ is overloaded operator that converts model name to relative path to the model file.

let (@@) a b = System.IO.Path.Combine(a,b)
let jarRoot = __SOURCE_DIRECTORY__ @@ @"..\..\temp\stanford-corenlp-full-2013-06-20\stanford-corenlp-3.2.0-models\"
let modelsRoot = jarRoot @@ @"edu\stanford\nlp\models\"
let (!) path = modelsRoot @@ path

Now we are ready to instantiate the pipeline, but we need to do a small trick. Pipeline is configured to use default model files (for simplicity) and all paths are specified relatively to the root of stanford-corenlp-3.2.0-models.jar. To make things easier, we can temporary change current directory to the jarRoot, instantiate a pipeline and then change current directory back. This trick helps us dramatically decrease the number of code lines.

let props = Properties()
props.setProperty("annotators","tokenize, ssplit, pos, lemma, ner, parse, dcoref") |> ignore
props.setProperty("sutime.binders","0") |> ignore

let curDir = System.Environment.CurrentDirectory
System.IO.Directory.SetCurrentDirectory(jarRoot)
let pipeline = StanfordCoreNLP(props)
System.IO.Directory.SetCurrentDirectory(curDir)

However,  you do not have to do it. You can configure all models manually. The number of properties (especially paths to models) that you need to specify depends on the annotators value. Let’s assume for a moment that we are in Java world and we want to configure our pipeline in a custom way. Especially for this case, stanford-corenlp-3.2.0-models.jar contains StanfordCoreNLP.properties (you can find it in the folder with extracted files), where you can specify new property values out of code. Most of properties that we need to use for configuration are already mentioned in this file and you can easily understand what it what. But it is not enough to get it work, also you need to look into source code of Stanford CoreNLP. By the way, some days ago Stanford was moved CoreNLP source code into GitHub – now it is much easier to browse it.  Default paths to the models are specified in DefaultPaths.java file, property keys are listed in Constants.java file and information about which path match to which property name is contained in Dictionaries.java. Thus, you are able to dive deeper into pipeline configuration and do whatever you want. For lazy people I already have a working sample.

let props = Properties()
let (<==) key value = props.setProperty(key, value) |> ignore
"annotators"    <== "tokenize, ssplit, pos, lemma, ner, parse, dcoref"
"pos.model"     <== ! @"pos-tagger\english-bidirectional\english-bidirectional-distsim.tagger"
"ner.model"     <== ! @"ner\english.all.3class.distsim.crf.ser.gz"
"parse.model"   <== ! @"lexparser\englishPCFG.ser.gz"

"dcoref.demonym"            <== ! @"dcoref\demonyms.txt"
"dcoref.states"             <== ! @"dcoref\state-abbreviations.txt"
"dcoref.animate"            <== ! @"dcoref\animate.unigrams.txt"
"dcoref.inanimate"          <== ! @"dcoref\inanimate.unigrams.txt"
"dcoref.male"               <== ! @"dcoref\male.unigrams.txt"
"dcoref.neutral"            <== ! @"dcoref\neutral.unigrams.txt"
"dcoref.female"             <== ! @"dcoref\female.unigrams.txt"
"dcoref.plural"             <== ! @"dcoref\plural.unigrams.txt"
"dcoref.singular"           <== ! @"dcoref\singular.unigrams.txt"
"dcoref.countries"          <== ! @"dcoref\countries"
"dcoref.extra.gender"       <== ! @"dcoref\namegender.combine.txt"
"dcoref.states.provinces"   <== ! @"dcoref\statesandprovinces"
"dcoref.singleton.predictor"<== ! @"dcoref\singleton.predictor.ser"

let sutimeRules =
    [| ! @"sutime\defs.sutime.txt";
       ! @"sutime\english.holidays.sutime.txt";
       ! @"sutime\english.sutime.txt" |]
    |> String.concat ","
"sutime.rules"      <== sutimeRules
"sutime.binders"    <== "0"

let pipeline = StanfordCoreNLP(props)

As you see, this option is much longer and harder to do. I recommend to use the first one, especially if you do not need to change the default configuration.

And now the fun part. Everything else is pretty easy: we create an annotation from your text, path it through the pipeline and interpret the results.

let text = "Kosgi Santosh sent an email to Stanford University. He didn't get a reply.";

let annotation = Annotation(text)
pipeline.annotate(annotation)
use stream = new ByteArrayOutputStream()
pipeline.prettyPrint(annotation, new PrintWriter(stream))
printfn "%O" (stream.toString())

Certainly, you can extract all processing results from annotated test.

let customAnnotationPrint (annotation:Annotation) =
    printfn "-------------"
    printfn "Custom print:"
    printfn "-------------"
    let sentences = annotation.get(CoreAnnotations.SentencesAnnotation().getClass()) :?> java.util.ArrayList
    for sentence in sentences |> Seq.cast<CoreMap> do
        printfn "\n\nSentence : '%O'" sentence

    let tokens = sentence.get(CoreAnnotations.TokensAnnotation().getClass()) :?> java.util.ArrayList
    for token in (tokens |> Seq.cast<CoreLabel>) do
       let word = token.get(CoreAnnotations.TextAnnotation().getClass())
       let pos  = token.get(CoreAnnotations.PartOfSpeechAnnotation().getClass())
       let ner  = token.get(CoreAnnotations.NamedEntityTagAnnotation().getClass())
       printfn "%O \t[pos=%O; ner=%O]" word pos ner

    printfn "\nTree:"
    let tree = sentence.get(TreeCoreAnnotations.TreeAnnotation().getClass()) :?> Tree
    use stream = new ByteArrayOutputStream()
    tree.pennPrint(new PrintWriter(stream))
    printfn "The first sentence parsed is:\n %O" (stream.toString())

    printfn "\nDependencies:"
    let deps = sentence.get(SemanticGraphCoreAnnotations.CollapsedDependenciesAnnotation().getClass()) :?> SemanticGraph
    for edge in deps.edgeListSorted().toArray() |> Seq.cast<SemanticGraphEdge> do
        let gov = edge.getGovernor()
        let dep = edge.getDependent()
        printfn "%O(%s-%d,%s-%d)"
            (edge.getRelation())
            (gov.word()) (gov.index())
            (dep.word()) (dep.index())

The full code sample is available on GutHub, if you run it, you will see the following result:

Sentence #1 (9 tokens):
Kosgi Santosh sent an email to Stanford University.
[Text=Kosgi CharacterOffsetBegin=0 CharacterOffsetEnd=5 PartOfSpeech=NNP Lemma=Kosgi NamedEntityTag=PERSON] [Text=Santosh CharacterOffsetBegin=6 CharacterOffsetEnd=13 PartOfSpeech=NNP Lemma=Santosh NamedEntityTag=PERSON] [Text=sent CharacterOffsetBegin=14 CharacterOffsetEnd=18 PartOfSpeech=VBD Lemma=send NamedEntityTag=O] [Text=an CharacterOffsetBegin=19 CharacterOffsetEnd=21 PartOfSpeech=DT Lemma=a NamedEntityTag=O] [Text=email CharacterOffsetBegin=22 CharacterOffsetEnd=27 PartOfSpeech=NN Lemma=email NamedEntityTag=O] [Text=to CharacterOffsetBegin=28 CharacterOffsetEnd=30 PartOfSpeech=TO Lemma=to NamedEntityTag=O] [Text=Stanford CharacterOffsetBegin=31 CharacterOffsetEnd=39 PartOfSpeech=NNP Lemma=Stanford NamedEntityTag=ORGANIZATION] [Text=University CharacterOffsetBegin=40 CharacterOffsetEnd=50 PartOfSpeech=NNP Lemma=University NamedEntityTag=ORGANIZATION] [Text=. CharacterOffsetBegin=50 CharacterOffsetEnd=51 PartOfSpeech=. Lemma=. NamedEntityTag=O]
(ROOT
(S
(NP (NNP Kosgi) (NNP Santosh))
(VP (VBD sent)
(NP (DT an) (NN email))
(PP (TO to)
(NP (NNP Stanford) (NNP University))))
(. .)))

nn(Santosh-2, Kosgi-1)
nsubj(sent-3, Santosh-2)
root(ROOT-0, sent-3)
det(email-5, an-4)
dobj(sent-3, email-5)
nn(University-8, Stanford-7)
prep_to(sent-3, University-8)

Sentence #2 (7 tokens):
He didn’t get a reply.
[Text=He CharacterOffsetBegin=52 CharacterOffsetEnd=54 PartOfSpeech=PRP Lemma=he NamedEntityTag=O] [Text=did CharacterOffsetBegin=55 CharacterOffsetEnd=58 PartOfSpeech=VBD Lemma=do NamedEntityTag=O] [Text=n’t CharacterOffsetBegin=58 CharacterOffsetEnd=61 PartOfSpeech=RB Lemma=not NamedEntityTag=O] [Text=get CharacterOffsetBegin=62 CharacterOffsetEnd=65 PartOfSpeech=VB Lemma=get NamedEntityTag=O] [Text=a CharacterOffsetBegin=66 CharacterOffsetEnd=67 PartOfSpeech=DT Lemma=a NamedEntityTag=O] [Text=reply CharacterOffsetBegin=68 CharacterOffsetEnd=73 PartOfSpeech=NN Lemma=reply NamedEntityTag=O] [Text=. CharacterOffsetBegin=73 CharacterOffsetEnd=74 PartOfSpeech=. Lemma=. NamedEntityTag=O]
(ROOT
(S
(NP (PRP He))
(VP (VBD did) (RB n’t)
(VP (VB get)
(NP (DT a) (NN reply))))
(. .)))

nsubj(get-4, He-1)
aux(get-4, did-2)
neg(get-4, n’t-3)
root(ROOT-0, get-4)
det(reply-6, a-5)
dobj(get-4, reply-6)

Coreference set:
(2,1,[1,2)) -> (1,2,[1,3)), that is: “He” -> “Kosgi Santosh”

C# Sample

C# samples are also available on GitHub.

Stanford Temporal Tagger(SUTime)

nlp-logo-navbar

SUTime is a library for recognizing and normalizing time expressions. SUTime is available as part of the Stanford CoreNLP pipeline and can be used to annotate documents with temporal information. It is a deterministic rule-based system designed for extensibility.

There is one more useful thing that we can do with CoreNLP – time extraction. The way that we use CoreNLP is pretty similar to the previous sample. Firstly, we create an annotation pipeline and add there all required annotators. (Notice that this sample also use the operator defined at the beginning of the post)

let pipeline = AnnotationPipeline()
pipeline.addAnnotator(PTBTokenizerAnnotator(false))
pipeline.addAnnotator(WordsToSentencesAnnotator(false))

let tagger = MaxentTagger(! @"pos-tagger\english-bidirectional\english-bidirectional-distsim.tagger")
pipeline.addAnnotator(POSTaggerAnnotator(tagger))

let sutimeRules =
    [| ! @"sutime\defs.sutime.txt";
       ! @"sutime\english.holidays.sutime.txt";
       ! @"sutime\english.sutime.txt" |]
    |> String.concat ","
let props = Properties()
props.setProperty("sutime.rules", sutimeRules ) |> ignore
props.setProperty("sutime.binders", "0") |> ignore
pipeline.addAnnotator(TimeAnnotator("sutime", props))

Now we are ready to annotate something. This part is also equal to the same one from the previous sample.

let text = "Three interesting dates are 18 Feb 1997, the 20th of july and 4 days from today."
let annotation = Annotation(text)
annotation.set(CoreAnnotations.DocDateAnnotation().getClass(), "2013-07-14") |> ignore
pipeline.annotate(annotation)

And finally, we need to interpret annotating results.

printfn "%O\n" (annotation.get(CoreAnnotations.TextAnnotation().getClass()))
let timexAnnsAll = annotation.get(TimeAnnotations.TimexAnnotations().getClass()) :?> java.util.ArrayList
for cm in timexAnnsAll |> Seq.cast<CoreMap> do
    let tokens = cm.get(CoreAnnotations.TokensAnnotation().getClass()) :?> java.util.List
    let first = tokens.get(0)
    let last = tokens.get(tokens.size() - 1)
    let time = cm.get(TimeExpression.Annotation().getClass()) :?> TimeExpression
    printfn "%A [from char offset '%A' to '%A'] --> %A"
        cm first last (time.getTemporal())

The full code sample is available on GutHub, if you run it you will see the following result:

18 Feb 1997 [from char offset ’18’ to ‘1997’] –> 1997-2-18
the 20th of july [from char offset ‘the’ to ‘July’] –> XXXX-7-20
4 days from today [from char offset ‘4’ to ‘today’] –> THIS P1D OFFSET P4D

C# Sample

C# samples are also available on GitHub.

Conclusion

There is a pretty awesome library. I hope you enjoy it. Try it out right now!

There are some other more specific Stanford packages that are already available on NuGet:

Stanford Word Segmenter is available on NuGet

Update (2014, January 3): Links and/or samples in this post might be outdated. The latest version of samples are available on new Stanford.NLP.NET site.

nlp-logo-navbar

Tokenization of raw text is a standard pre-processing step for many NLP tasks. For English, tokenization usually involves punctuation splitting and separation of some affixes like possessives. Other languages require more extensive token pre-processing, which is usually called segmentation.

The Stanford Word Segmenter currently supports Arabic and Chinese. The provided segmentation schemes have been found to work well for a variety of applications.

One more tool from Stanford NLP Software Package become ready on NuGet today. It is a Stanford Word Segmenter. This is a fourth one Stanford NuGet package published by me, previous ones were a “Stanford Parser“, “Stanford Named Entity Recognizer (NER)” and “Stanford Log-linear Part-Of-Speech Tagger“. Please follow next steps to get started:

F# Sample

For more details see source code on GitHub.

open java.util
open edu.stanford.nlp.ie.crf

[<EntryPoint>]
let main argv =
if (argv.Length <> 1) then
printf "usage: StanfordSegmenter.Csharp.Samples.exe filename"
else
let props = Properties();
props.setProperty("sighanCorporaDict", @"..\..\..\..\temp\stanford-segmenter-2013-06-20\data") |> ignore
props.setProperty("serDictionary", @"..\..\..\..\temp\stanford-segmenter-2013-06-20\data\dict-chris6.ser.gz") |> ignore
props.setProperty("testFile", argv.[0]) |> ignore
props.setProperty("inputEncoding", "UTF-8") |> ignore
props.setProperty("sighanPostProcessing", "true") |> ignore

let segmenter = CRFClassifier(props)
segmenter.loadClassifierNoExceptions(@"..\..\..\..\temp\stanford-segmenter-2013-06-20\data\ctb.gz", props)
segmenter.classifyAndWriteAnswers(argv.[0])
0

C# Sample

For more details see source code on GitHub.

using java.util;
using edu.stanford.nlp.ie.crf;

namespace StanfordSegmenter.Csharp.Samples
{
class Program
{
static void Main(string[] args)
{
if (args.Length != 1)
{
System.Console.WriteLine("usage: StanfordSegmenter.Csharp.Samples.exe filename");
return;
}

var props = new Properties();
props.setProperty("sighanCorporaDict", @"..\..\..\..\temp\stanford-segmenter-2013-06-20\data");
props.setProperty("serDictionary", @"..\..\..\..\temp\stanford-segmenter-2013-06-20\data\dict-chris6.ser.gz");
props.setProperty("testFile", args[0]);
props.setProperty("inputEncoding", "UTF-8");
props.setProperty("sighanPostProcessing", "true");

var segmenter = new CRFClassifier(props);
segmenter.loadClassifierNoExceptions(@"..\..\..\..\temp\stanford-segmenter-2013-06-20\data\ctb.gz", props);
segmenter.classifyAndWriteAnswers(args[0]);
}
}
}

Stanford Log-linear Part-Of-Speech Tagger is available on NuGet

Update (2014, January 3): Links and/or samples in this post might be outdated. The latest version of samples are available on new Stanford.NLP.NET site.

nlp-logo-navbarThere is one more tool that has become ready on NuGet today. It is a Stanford Log-linear Part-Of-Speech Tagger. This is a third one Stanford NuGet package published by me, previous ones were a “Stanford Parser“ and “Stanford Named Entity Recognizer (NER)“. I have already posted about this tool with guidance on how to recompile it and use from F# (see “NLP: Stanford POS Tagger with F# (.NET)“). Please follow next steps to get started:

F# Sample

For more details see source code on GitHub.

let model = @"..\..\..\..\temp\stanford-postagger-2013-06-20\models\wsj-0-18-bidirectional-nodistsim.tagger"

let tagReader (reader:Reader) =
    let tagger = MaxentTagger(model)
    MaxentTagger.tokenizeText(reader)
    |> Iterable.toSeq
    |> Seq.iter (fun sentence ->
        let tSentence = tagger.tagSentence(sentence :?> List)
        printfn "%O" (Sentence.listToString(tSentence, false))
    )

let tagFile (fileName:string) =
    tagReader (new BufferedReader(new FileReader(fileName)))

let tagText (text:string) =
    tagReader (new StringReader(text))

C# Sample

For more details see source code on GitHub.

public static class TaggerDemo
{
    public const string Model =
        @"..\..\..\..\temp\stanford-postagger-2013-06-20\models\wsj-0-18-bidirectional-nodistsim.tagger";

    private static void TagReader(Reader reader)
    {
        var tagger = new MaxentTagger(Model);
        foreach (List sentence in MaxentTagger.tokenizeText(reader).toArray())
        {
             var tSentence = tagger.tagSentence(sentence);
             System.Console.WriteLine(Sentence.listToString(tSentence, false));
        }
    }

    public static void TagFile (string fileName)
    {
        TagReader(new BufferedReader(new FileReader(fileName)));
    }

    public static void TagText(string text)
    {
        TagReader(new StringReader(text));
    }
}

As a result of both samples you will see the same output. For example, if you start program with these parameters:

1 text "A Part-Of-Speech Tagger (POS Tagger) is a piece of software that reads 
text in some language and assigns parts of speech to each word (and other token), 
such as noun, verb, adjective, etc., although generally computational 
applications use more fine-grained POS tags like 'noun-plural'."

Then you will see following on your screen:

A/DT Part-Of-Speech/NNP Tagger/NNP -LRB-/-LRB- POS/NNP Tagger/NNP -RRB-/-RRB- 
is/VBZ a/DT piece/NN of/IN software/NN that/WDT reads/VBZ text/NN in/IN some/DT 
language/NN and/CC assigns/VBZ parts/NNS of/IN speech/NN to/TO each/DT word/NN 
-LRB-/-LRB- and/CC other/JJ token/JJ -RRB-/-RRB- ,/, such/JJ as/IN noun/JJ ,/, 
verb/JJ ,/, adjective/JJ ,/, etc./FW ,/, although/IN generally/RB computational/JJ 
applications/NNS use/VBP more/RBR fine-grained/JJ POS/NNP tags/NNS like/IN `/`` 
noun-plural/JJ '/'' ./.

Stanford Named Entity Recognizer (NER) is available on NuGet

Update (2017, July 24): Links and/or samples in this post might be outdated. The latest version of samples is available on new Stanford.NLP.NET site.

nlp-logo-navbarOne more tool from Stanford NLP product line became available on NuGet today. It is the second library that was recompiled and published to the NuGet. The first one was the “Stanford Parser“. The second one is Stanford Named Entity Recognizer (NER). I have already posted about this tool with guidance on how to recompile it and use from F# (see “NLP: Stanford Named Entity Recognizer with F# (.NET)“). There are some other interesting things happen, NER is kind of hot topic. I recently saw a question about C# NER on CodeProject, Flo asked me about NER in the comment of another post. So, I am happy to make it wider available. The flow of use is as follows:

F# Sample

F# sample is pretty much the same as in ”NLP: Stanford Named Entity Recognizer with F# (.NET)” post. For more details see source code on GitHub.

let main file =
    let classifier =
        CRFClassifier.getClassifierNoExceptions(
             @"..\..\..\..\temp\stanford-ner-2013-06-20\classifiers\english.all.3class.distsim.crf.ser.gz")
    // For either a file to annotate or for the hardcoded text example,
    // this demo file shows two ways to process the output, for teaching
    // purposes.  For the file, it shows both how to run NER on a String
    // and how to run it on a whole file.  For the hard-coded String,
    // it shows how to run it on a single sentence, and how to do this
    // and produce an inline XML output format.
    match file with
    | Some(fileName) ->
        let fileContents = File.ReadAllText(fileName)
        classifier.classify(fileContents)
        |> Iterable.toSeq
        |> Seq.cast<java.util.List>
        |> Seq.iter (fun sentence ->
            sentence
            |> Iterable.toSeq
            |> Seq.cast<CoreLabel>
            |> Seq.iter (fun word ->
                 printf "%s/%O " (word.word()) (word.get(CoreAnnotations.AnswerAnnotation().getClass()))
            )
            printfn ""
        )
    | None ->
        let s1 = "Good afternoon Rajat Raina, how are you today?"
        let s2 = "I go to school at Stanford University, which is located in California."
        printfn "%s\n" (classifier.classifyToString(s1))
        printfn "%s\n" (classifier.classifyWithInlineXML(s2))
        printfn "%s\n" (classifier.classifyToString(s2, "xml", true));
        classifier.classify(s2)
        |> Iterable.toSeq
        |> Seq.iteri (fun i coreLabel ->
            printfn "%d\n:%O\n" i coreLabel
        )

C# Sample

C# version is quite similar. For more details see source code on GitHub.

class Program
{
    public static CRFClassifier Classifier =
        CRFClassifier.getClassifierNoExceptions(
             @"..\..\..\..\temp\stanford-ner-2013-06-20\classifiers\english.all.3class.distsim.crf.ser.gz");

    // For either a file to annotate or for the hardcoded text example,
    // this demo file shows two ways to process the output, for teaching
    // purposes.  For the file, it shows both how to run NER on a String
    // and how to run it on a whole file.  For the hard-coded String,
    // it shows how to run it on a single sentence, and how to do this
    // and produce an inline XML output format.

    static void Main(string[] args)
    {
        if (args.Length > 0)
        {
            var fileContent = File.ReadAllText(args[0]);
            foreach (List sentence in Classifier.classify(fileContent).toArray())
            {
                foreach (CoreLabel word in sentence.toArray())
                {
                    Console.Write( "{0}/{1} ", word.word(), word.get(new CoreAnnotations.AnswerAnnotation().getClass()));
                }
                Console.WriteLine();
            }
        } else
        {
            const string S1 = "Good afternoon Rajat Raina, how are you today?";
            const string S2 = "I go to school at Stanford University, which is located in California.";
            Console.WriteLine("{0}\n", Classifier.classifyToString(S1));
            Console.WriteLine("{0}\n", Classifier.classifyWithInlineXML(S2));
            Console.WriteLine("{0}\n", Classifier.classifyToString(S2, "xml", true));

            var classification = Classifier.classify(S2).toArray();
            for (var i = 0; i < classification.Length; i++)
            {
                Console.WriteLine("{0}\n:{1}\n", i, classification[i]);
            }
        }
    }
}

As a result of both samples you will see the following output:

Don/PERSON Syme/PERSON is/O an/O Australian/O computer/O scientist/O and/O a/O 
Principal/O Researcher/O at/O Microsoft/ORGANIZATION Research/ORGANIZATION ,/O 
Cambridge/LOCATION ,/O U.K./LOCATION ./O He/O is/O the/O designer/O and/O 
architect/O of/O the/O F/O #/O programming/O language/O ,/O described/O by/O 
a/O reporter/O as/O being/O regarded/O as/O ``/O the/O most/O original/O new/O 
face/O in/O computer/O languages/O since/O Bjarne/PERSON Stroustrup/PERSON 
developed/O C/O +/O +/O in/O the/O early/O 1980s/O ./O
Earlier/O ,/O Syme/PERSON created/O generics/O in/O the/O ./O NET/O Common/O 
Language/O Runtime/O ,/O including/O the/O initial/O design/O of/O generics/O 
for/O the/O C/O #/O programming/O language/O ,/O along/O with/O others/O 
including/O Andrew/PERSON Kennedy/PERSON and/O later/O Anders/PERSON 
Hejlsberg/PERSON ./O Kennedy/PERSON ,/O Syme/PERSON and/O Yu/PERSON also/O 
formalized/O this/O widely/O used/O system/O ./O
He/O holds/O a/O Ph.D./O from/O the/O University/ORGANIZATION of/ORGANIZATION 
Cambridge/ORGANIZATION ,/O and/O is/O a/O member/O of/O the/O WG2/O .8/O 
working/O group/O on/O functional/O programming/O ./O He/O is/O a/O co-author/O 
of/O the/O book/O Expert/O F/O #/O 2.0/O ./O
In/O the/O past/O he/O also/O worked/O on/O formal/O specification/O ,/O 
interactive/O proof/O ,/O automated/O verification/O and/O proof/O description/O 
languages/O ./O

Stanford Parser is available on NuGet for F# and C#

Update (2014, January 3): Links and/or samples in this post might be outdated. The latest version of samples are available on new Stanford.NLP.NET site.

nlp-logo-navbarI have already wrote small series of posts about porting of Stanford NLP Products to .NET using IKVM.NET. The first was about Stanford Parser “NLP: Stanford Parser with F# (.NET)“. It shows how to recompile and use parser from F#. Recently I wrote one more post “FSharp.NLP.Stanford.Parser available on NuGet” that announced already recompiled version of Stanford Parser included into NuGet package with some helpers functionality for F# devs.

As I see, it is still not so simple as it should be. I’ve seen sometimes questions from C# guys about different NLP tasks with answers pointing to my “The Stanford Natural Language Processing Samples, in F#” repository (like this). Probably, it is no so easy to find the latest version of IKVM.NET Compiler (it is not included into IKVM.NET NuGet package) and manage to quickly rebuild Stanford Parser from the scratch for the first time.

I have decided to create a NuGet package for clear porting of Stanford Parser to .NET with strongly signed assemblies and without dependencies to F#. My primary goal has been to find a clear, simple and intuitive way to try NLP magic from .NET for all NLP lovers. Now, it is simpler then ever:

F# Sample

F# sample is not much different from one mentioned in “NLP: Stanford Parser with F# (.NET)” post. For more details see source code on GitHub.

let demoDP (lp:LexicalizedParser) (fileName:string) =
    // This option shows loading and sentence-segment and tokenizing
    // a file using DocumentPreprocessor
    let tlp = PennTreebankLanguagePack();
    let gsf = tlp.grammaticalStructureFactory();
    // You could also create a tokenizer here (as below) and pass it
    // to DocumentPreprocessor
    DocumentPreprocessor(fileName)
    |> Iterable.toSeq
    |> Seq.cast<List>
    |> Seq.iter (fun sentence ->
        let parse = lp.apply(sentence);
        parse.pennPrint();

        let gs = gsf.newGrammaticalStructure(parse);
        let tdl = gs.typedDependenciesCCprocessed(true);
        printfn "\n%O\n" tdl
    )

let demoAPI (lp:LexicalizedParser) =
    // This option shows parsing a list of correctly tokenized words
    let sent = [|"This"; "is"; "an"; "easy"; "sentence"; "." |]
    let rawWords = Sentence.toCoreLabelList(sent)
    let parse = lp.apply(rawWords)
    parse.pennPrint()

    // This option shows loading and using an explicit tokenizer
    let sent2 = "This is another sentence."
    let tokenizerFactory = PTBTokenizer.factory(CoreLabelTokenFactory(), "")
    use sent2Reader = new StringReader(sent2)
    let rawWords2 = tokenizerFactory.getTokenizer(sent2Reader).tokenize()
    let parse = lp.apply(rawWords2)

    let tlp = PennTreebankLanguagePack()
    let gsf = tlp.grammaticalStructureFactory()
    let gs = gsf.newGrammaticalStructure(parse)
    let tdl = gs.typedDependenciesCCprocessed()
    printfn "\n%O\n" tdl

    let tp = new TreePrint("penn,typedDependenciesCollapsed")
    tp.printTree(parse)

let main fileName =
    let lp = LexicalizedParser.loadModel(@"...\englishPCFG.ser.gz")
    match fileName with
    | Some(file) -> demoDP lp file
    | None -> demoAPI lp

C# Sample

C# version is quite similar. For more details see source code on GitHub.

public static class ParserDemo
{
    public static void DemoDP(LexicalizedParser lp, string fileName)
    {
        // This option shows loading and sentence-segment and tokenizing
        // a file using DocumentPreprocessor
        var tlp = new PennTreebankLanguagePack();
        var gsf = tlp.grammaticalStructureFactory();
        // You could also create a tokenizer here (as below) and pass it
        // to DocumentPreprocessor
        foreach (List sentence in new DocumentPreprocessor(fileName))
        {
            var parse = lp.apply(sentence);
            parse.pennPrint();

            var gs = gsf.newGrammaticalStructure(parse);
            var tdl = gs.typedDependenciesCCprocessed(true);
            System.Console.WriteLine("\n{0}\n", tdl);
        }
    }

    public static void DemoAPI(LexicalizedParser lp)
    {
        // This option shows parsing a list of correctly tokenized words
        var sent = new[] { "This", "is", "an", "easy", "sentence", "." };
        var rawWords = Sentence.toCoreLabelList(sent);
        var parse = lp.apply(rawWords);
        parse.pennPrint();

        // This option shows loading and using an explicit tokenizer
        const string Sent2 = "This is another sentence.";
        var tokenizerFactory = PTBTokenizer.factory(new CoreLabelTokenFactory(), "");
        var sent2Reader = new StringReader(Sent2);
        var rawWords2 = tokenizerFactory.getTokenizer(sent2Reader).tokenize();
        parse = lp.apply(rawWords2);

        var tlp = new PennTreebankLanguagePack();
        var gsf = tlp.grammaticalStructureFactory();
        var gs = gsf.newGrammaticalStructure(parse);
        var tdl = gs.typedDependenciesCCprocessed();
        System.Console.WriteLine("\n{0}\n", tdl);

        var tp = new TreePrint("penn,typedDependenciesCollapsed");
        tp.printTree(parse);
    }

    public static void Start(string fileName)
    {
         var lp =LexicalizedParser.loadModel(Program.ParserModel);
         if (!String.IsNullOrEmpty(fileName))
              DemoDP(lp, fileName);
         else
              DemoAPI(lp);
    }
}

As a result of both samples you will see the following output:

Loading parser from serialized file ..\..\..\..\StanfordNLPLibraries\
stanford-parser\stanford-parser-2.0.4-models\englishPCFG.ser.gz ... 
done [1.5 sec].
(ROOT
 (S
 (NP (DT This))
 (VP (VBZ is)
 (NP (DT an) (JJ easy) (NN sentence)))
 (. .)))

[nsubj(sentence-4, This-1), cop(sentence-4, is-2), det(sentence-4, another-3), 
root(ROOT-0, sentence-4)]
(ROOT
 (S
 (NP (DT This))
 (VP (VBZ is)
 (NP (DT another) (NN sentence)))
 (. .)))
nsubj(sentence-4, This-1)
cop(sentence-4, is-2)
det(sentence-4, another-3)
root(ROOT-0, sentence-4)