Introducing Clippit, get your slides out of PPTX.

logoTL;TR

Clippit is .NETStandard 2.0 library that allows you to easily and efficiently extract all slides from PPTX presentation into one-slide presentations or compose slides back together into one presentation.

Why?

PowerPoint is still the most popular way to present information. Sales and marketing people regularly produce new presentations. But when they work on new presentation they often reuse slides from previous ones. Here is the gap: when you compose presentation you need slides that can be reused, but result of your work is the presentation and you are not generally interested in “slide management”.

One of my projects is enterprise search solution, that help people find Office documents across different enterprise storage systems. One of cool features is that we let our users find particular relevant slide from presentation rather than huge pptx with something relevant on slide 57.

How it was done before

Back in the day, Microsoft PowerPoint allowed us to “Publish slides” (save each individual slide into separate file). I am absolutely sure that this button was in PowerPoint 2013 and as far as I know was removed from PowerPoint 365 and 2019 versions.

d596b287-af31-4ecb-a8e0-092b4dbbed2b.jpeg

When this feature was in the box, you could use Microsoft.Office.Interop.PowerPoint.dll to start instance of PowerPoint and communicate with it using COM Interop.

public void PublishSlides(string sourceFileName, string resultDirectory)
{
Application ppApp = null;
try
{
ppApp = new Application
{
DisplayAlerts = PpAlertLevel.ppAlertsNone
};
const MsoTriState msoFalse = MsoTriState.msoFalse;
var presentation = ppApp.Presentations.Open(sourceFileName,
msoFalse, msoFalse, msoFalse);
presentation.PublishSlides(resultDirectory, true, true);
presentation.Close();
}
finally
{
ppApp?.Quit();
}
}

view raw
PP-Interop.cs
hosted with ❤ by GitHub

But server-side Automation of Office has never been recommended by Microsoft. You were never able to reliably scale your automation, like start multiple instances to work with different document (because you need to think about active window and any on them may stop responding to your command). There is no guarantee that File->Open command will return control to you program, because for example if file is password-protected Office will show popup and ask for password and so on.

That was hard, but doable. PowerPoint guarantees that published slides will be valid PowerPoint documents that user will be able to open and preview. So it is worth playing the ceremony of single-thread automation with retries, timeouts and process kills (when you do not receive control back).

Over the time it became clear that it is the dead end. We need to keep the old version of PowerPoint on some VM and never touch it or find a better way to do it.

The History

Windows only solution that requires MS Office installed on the machine and COM interop is not something that you expect from modern .NET solution.

Ideally it should be .NETStandard library on NuGet that platform-agnostic and able to solve you task anywhere and as fast as possible. But there was nothing on Nuget few months ago.

If you ever work with Office documents from C# you know that there is an OpenXml library that opens office document, deserialize it internals to an object model, let you modify it and then save it back. But OpenXml API is low-level and you need to know a lot about OpenXml internals to be able to extract slides with images, embedding, layouts, masters and cross-references into new presentation correctly.

If you google more you will find that there is a project “Open-Xml-PowerTools” developed by Microsoft since 2015 that have never been officially released on NuGet. Currently this project is archived by OfficeDev team and most actively maintained fork belongs to EricWhiteDev (No NuGet.org feed at this time).

Open-Xml-PowerTools has a feature called PresentationBuilder that was created for similar purpose – compose slide ranges from multiple presentations into one presentation. After playing with this library, I realized that it does a great job but does not fully satisfy my requirements:

  • Resource usage are not efficient, same streams are opened multiple times and not always properly disposed.
  • Library is much slower than it could be with proper resource management and less GC pressure.
  • It generates slides with total size much larger than original presentation, because it copies all layouts when only one is needed.
  • It does not properly name image parts inside slide, corrupt file extensions and does not support SVG.

It was a great starting point, but I realized that I can improve it. Not only fix all mentioned issues and improve performance 6x times but also add support for new image types, properly extract slide titles and convert then into presentation titles, propagate modification date and erase metadata that does not belong to slide.

How it is done today

So today, I am ready to present the new library Clippit that is technically a fork of most recent version of EricWhiteDev/Open-Xml-PowerTools that is extended and improved for one particular use case: extracting slides from presentation and composing them back efficiently.

All classes were moved to Clippit namespace, so you can load it side-by-side with any version of Open-Xml-PowerTools if you already use it.

The library is already available on NuGet, it is written using C# 8.0 (nullable reference types), compiled for .NET Standard 2.0, tested with .NET Core 3.1. It works perfectly on macOS/Linux and battle-tested on hundreds of real world PowerPoint presentations.

New API is quite simple and easy to use

var presentation = new PmlDocument(sourceFile);
// Pubslish slides
var slides = PresentationBuilder.PublishSlides(presentation).ToList();
// Save slides into files
foreach (var slide in slides)
{
var targetPath = Path.Combine(targetDir, Path.GetFileName(slide.FileName))
slide.SaveAs(targetPath);
}
// Compose slides back into one presentation
var sources = slides.Select(x => new SlideSource(x, keepMaster:true)).ToList();
PresentationBuilder.BuildPresentation(sources)
.SaveAs(newFileName);

view raw
Clippit-101.cs
hosted with ❤ by GitHub

P.S. Stay tuned, there will be more OpenXml goodness.

HashiCorp Vault and TLS Certificate Authentication for .NET Applications (Comprehensive guide)

HashiCorp Vault is a tool for secrets management, encryption as a service, and privileged access management. It is quite popular nowadays, especially if you own your own infrastructure, private cloud or just cannot store your secrets using Key Vault services provided by Azure/AWS/GCP.

I assume that you already have one up and running instance of HashiCorp Vault, otherwise you may install one using official Installing Vault guide.

Why TLS certificate authentication?

Vault supports many Auth Methods. But what if you are still deploying your app on plain old Windows Server VMs or develop SharePoint application (like I am 😝).

The challenge in this case, that you have to authenticate in Vault in order to get a secret. This means that we need to choose auth method that protects our auth secrets from an  accident IT guys who may login on the VM (or malicious code that may find it on file system)

TLS Certificate Auth is a good solution candidate, because we can install certificate into windows certificate store, protect private key (mark it as not-exportable) and even specify list of service accounts, allowed to use this certificate for authentication.

TLS certificate generation

I will be using ssh command on my macOS for certificate generation and Vault configuration, but you can repeat the same step from Window for sure.

For our needs we will use self-signed certificate. You can generate one using OpenSSL. If you do not have OpenSSL installed, you can install from Homebrew.

brew install openssl

First of all we generate private key (it is highly secured, do not share it)

openssl genrsa 2048 > vault_private.pem

Then we generate public part of the key in .pem format (.pem file will be uploaded to Vault for client validation during authentication)

openssl req -x509 -new -key vault_private.pem -out vault_public.pem -days 365

Answer all questions properly, it will help you identify this certificate in future (I’ve created certificate that is valid for 365 days, but you should follow security standards defined in you company).

vault-cfg_sh_—_private-key.png

Note: Common Name cannot be empty, otherwise you will not be able to use this certificate to retrieve the secret (Vault returns ‘missing name in alias’ error). Thank you  Vadzim Makarchyk for this note.

The final step is to archive both parts in .pfx format (.pfx file will be deployed into Windows Server certificate store on all machines from where our code should have access to Vault)

openssl pkcs12 -export -in vault_public.pem -inkey vault_private.pem -out vault.pfx

vault-cfg_sh_—_vault-cfg.png

Remember the password entered during *.pfx creation, you’re gonna need it every time you decide to install it on Windows machine.

Vault configuration

In order to configure HashiCorp Vault we will use Vault CLI interface, that can be installed from Homebrew on macOS.

brew install vault

Vault CLI uses environment variables for configuration. My Vault server is hosted on different machine so I need to provide server Url.

VAULT_ADDR=https://my.server.com:8200

export VAULT_ADDR
I uses Enterprise version of Vault that is used by several teams, that it why I also specify namespace (aka folder for my secrets)
VAULT_NAMESPACE=dev/my-team

export VAULT_NAMESPACE

I am lazy to properly setup certificates for Vault CLI, that is why I skip certificate validation (never repeat it in production 😉)

VAULT_SKIP_VERIFY=true

export VAULT_SKIP_VERIFY

We are almost ready to login. The easiest option is to login using Web UI and then reuse issued token in the terminal. Login using your favorite browser, pass authentication and copy token in buffer.

EPAM_Laptop

vault login s.fJTY5S51oIfXKnBAG3Qq5eWp.9GKyY

That is it! Token is saved into ~/.vault-token and CLI is ready to use!

Key/Value secret engine creation

Vault supports multiple Secret Engines, but for our demo we create simple Key/Value storage for secrets (for example to store logins and passwords)

vault secrets enable -path=kv kv
This command enable key/value engine (V1) and name kv (-path param)
NOTE: The kv secrets engine has two versions: kv and kv-v2. To enable versioned kv secrets engine, pass kv-v2 instead.

Engine is ready, but it is empty – let’s fix it.

vault write kv/my-secret value="s3c(eT"

This command effectively creates my-secret secret inside kv secret engine and store one key/value pair inside value=”s3c(eT”

ACL Policy creation

Secret engine is secured, nobody (except you, admin) has access to secrets. We need to create rules/policy that define what access we want to provide. Create new files policy-file.hcl and put following content inside.

path "kv/*" {
  capabilities = ["read", "list"]
}

This policy allows to read and list all secrets inside kv secret engine. All users with this policy will be able to read secrets from our engine. Read more about policies.

Write this policy to the server (and name it policy-name)

vault policy write policy-name policy-file.hcl

TLS Certificates – Auth Method

The last step is to assign this policy. But we want to assign it to all clients authenticated in Vault using TLS certificate created by us earlier.

Fist of all we need to enable certificate authentication in our namespace

vault auth enable cert

and create certificate auth in Vault (name it app), assign policy-name to it and upload the public part of generated key (vault_public.pem)

vault write auth/cert/certs/app policies=policy-name certificate=@vault_public.pem

That is it! Vault is configured and waiting for first connection.

TLS certificate deployment

TLS certificate allows us to deploy it to certain set of machines that should have access to the Vault and then specify which accounts (on these machines) may use it for authentication.

If you are lucky enough and your deployment is automated you can add one more build step in your deployment process that ensures that certificate is provisioned on all target machines. Octopus Deploy is one of such tools that provides built-in template for certificate provisioning. (BTW, it is free for small teams starting from Sept 2, 2019)

importcert.png

On the screenshot you see the step that imports certificate on all target machines with tag SharePoint (in my case) to LocalMachine certificate store to My/Personal store, mark private-key as not exportable and provide access to private key to 2 service accounts.

If your deployment is not automated, you may script the same steps using PowerShell and run it on all machines.

#Import certificate to local machine personal folder
$root = Set-Location PassThru $PSScriptRoot
$cert = Get-ChildItem Path $root | where {$_.Extension -like "*.pfx"}
$PlainTextPass = Read-Host Prompt "Type .pfx password for '$cert' certificate"
$pfxpass = $PlainTextPass | ConvertTo-SecureString AsPlainText Force
$cert = $cert | Import-PfxCertificate CertStoreLocation Cert:\LocalMachine\My Exportable Password $pfxpass
Write-Host "Certificate is imported"
#Grant permission to selected account on private key and MachineKeys folder
$fileName = $cert.PrivateKey.CspKeyContainerInfo.UniqueKeyContainerName
$path = "$env:ALLUSERSPROFILE\Microsoft\Crypto\RSA\MachineKeys\$fileName"
function SetPermissions([string[]]$accountNames)
{
$acl = Get-Acl Path $path
# Add the new user and preserve all current permissions: SetAccessRuleProtection(False, X)
# Add the new user and remove all inherited permissions: SetAccessRuleProtection(True, False)
# Add the new user and convert all inherited permissions to explicit permissions: SetAccessRuleProtection(True, True)
$acl.SetAccessRuleProtection($True, $False)
foreach ($accountName in $accountNames) {
$rule = New-Object System.Security.AccessControl.FileSystemAccessRule($accountName,"Full","Allow")
$acl.AddAccessRule($rule)
}
Set-Acl Path $path AclObject $acl
Write-Host "Access to certificate is granted for $accountNames"
}
SetPermissions(@(
"me@sergeytihon.com",
"you@sergeytihon.com"
))

If you are brave, you can click it even manually! 🙈

  1. Double click on vault.pfx file and choose LocalMachine store location
    store.png
  2. Click Next, Next and type password used during *.pfx creation and Next again.
  3. Choose Personal certificate store.
    EPAM_Laptop
  4. Click Next, Finish, OK – your certificated in the store!
  5. Execute mmc (Microsoft Managed Console) from start menu.
  6. File -> Add/Remove Snap-in …
    addmmc.png
  7. Certificate, Add, Computer account and click Next & Ok
    certaddacc.png
  8. Find our certificate and click Manage Private Keys…
    prk.png
  9. On this screen you can manage the list of accounts that will be able to  use this certificate for authentication on the current machine.
    acl.png

.NET client application

Vault is ready, machine is ready (service account / current user is allowed to use certificate from the LocalMachine/Personal store).  Few lines of code are separating us from success 😊.

I will use VaultSharp NuGet Package. It is more or less up to date, it supports namespaces feature and starting from next release usage of namespaces will become even more intuitive.

using System;
using System.Collections.Generic;
using System.Data;
using System.Linq;
using System.Threading.Tasks;
using System.Security.Cryptography.X509Certificates;
using VaultSharp;
using VaultSharp.V1.AuthMethods.Cert;
namespace SergeyTihon.App.Configuration
{
public class VaultSecretProvider
{
public VaultSecretProvider(string vaultUrl, string vaultNamespace, string certificateThumbprint)
{
var clientCertificate = GetCertificate(certificateThumbprint);
var authMethod = new CertAuthMethodInfo(clientCertificate);
_vaultClient = new VaultClient(new VaultClientSettings(vaultUrl, authMethod)
{
BeforeApiRequestAction = (httpClient, httpRequestMessage) =>
{
httpRequestMessage.Headers.Add("X-Vault-Namespace", vaultNamespace);
}
});
}
public static X509Certificate2 GetCertificate(string certThumbprint)
{
var store = new X509Store(StoreName.My, StoreLocation.LocalMachine);
store.Open(OpenFlags.ReadOnly);
var certCollection = store.Certificates;
// Find unexpired certificates.
var currentCerts = certCollection.Find(X509FindType.FindByTimeValid, DateTime.Now, false);
// From the collection of unexpired certificates, find the ones with the correct thumbprint.
var signingCert = currentCerts.Find(X509FindType.FindByThumbprint, certThumbprint, false);
// Return the first certificate in the collection, has the right name and is current.
var cert = signingCert.OfType<X509Certificate2>().OrderByDescending(c => c.NotBefore).FirstOrDefault();
store.Close();
if (cert is null)
{
throw new DataException($"Cannot find valid certificate with thumbprint {certThumbprint}");
}
return cert;
}
private readonly VaultClient _vaultClient;
public async Task<Dictionary<string, object>> GetValue(string path, string mountPoint)
{
var secret = await _vaultClient.V1.Secrets.KeyValue.V1.ReadSecretAsync(path, mountPoint);
return secret.Data;
}
}
}

VaultSecretProvider find X509 certificate in StoreName.My / StoreLocation.LocalMachine, then create CertAuthMethodInfo using certificate and VaultClient that X-Vault-Namespace header to each request with vaultNamespace name.

Using configured instance of VaultClient we can request our secret from Vault _vaultClient.V1.Secrets.KeyValue.V1.ReadSecretAsync(path, mountPoint) specifying path to the secret and mountPoint (name of secret engine).

We are ready to call and receive secrets

new VaultSecretProvider(
"https://my.server.com:8200", // VAULT_ADDR
"dev/my-team", // VAULT_NAMESPACE
"877501d5a018e9344088fd5c89580f6b095f5326" // vault.pfx certificate thumbprint
).GetValue("my-secret", "kv") // path to the secret vault write kv/mysecret value="s3c(eT"

Conclusion

Wow, this became a long read, but I hope it was a good one.

TLS certificate authenctication in Vault is a good option for apps that uses Full .NET Framework and runs inside Windows Server VMs.

Just do not forget renew/replace certificates regularly.

Be better WPF / MvvmLight developer in 2018

It is 2018, the time of .NET Core, x-plat, clouds, microservices, blockchain and shine of JavaScript. But, there are guys, like me, who still maintain and sometimes develop classic  .NET desktop applications for Windows.

I am not a WPF expert, but I spent a couple of days reviewing, testing and fixing one of our desktop apps and I definitely learned a couple of new tips & tricks that worth to share with other non-experts.

Part #1: General Tips

Tip #1.1: Choose right library/framework

It happened that we use MvvmLight. The library is lightweight and already exists for almost 10 years, MVVM pattern is well-known and lets us keep solution code reasonably well-structured.

But this is definitely not the only choice, there are many other different-purpose libraries and frameworks that may suit you better, especially if you do green-field development. So choose carefully:

Tip #1.2: Distribute using Squirrel.Windows

Installers always were hard, the seamless auto-update process is even harder. But, today, we have the solution that works for simple user-oriented applications that don’t do crazy things during installation. This solution is Squirrel.Windows – an installation and update framework for Windows desktop apps, designed for C# apps.

It’s definitely worth to learn it once and use it for all apps that you develop.

Tip #1.3: Think about monitoring

Aggregated analytics from user’s machine is priceless for successful apps. There are plenty amount of data that can help you deliver better apps:

  1. Crash reports
  2. Application version distribution
  3. User’s count / Active user
  4. Performance / Integrations tracking
  5. Custom events / Logs

It is not always possible to collect all kinds of data from user’s machine, but do it if you can. There are a couple of services that may help you, like Application Insights, HockeyApp and others.

Tip #1.4: Use the full power of IDE

Learn tools that MS baked for you and use them

Tip #1.5: Debug Data Binding Issues

When data bindings do not play nice you have a possibility to debug. It is not super intuitive, but there are ways to step into the binding process to better figure out what is actually going on. Check this nice article from Mike Woelmer – How To Debug Data Binding Issues in WPF 

Part #2: MVVM Light – Code Tips

C# quickly evolves over time, more and more features become available to us. It is not always obvious how to use new async code with an old API.

Tip #2.1: “New” INotifyPropertyChanged syntax

I think almost any WPF developer knows how to implement INotifyPropertyChanged interface

public class MyViewModel : INotifyPropertyChanged
{
    private string _isBusy;
    public event PropertyChangedEventHandler PropertyChanged;

    public MyViewModel() {}

    public string IsBusy
    {
        get { return _isBusy; }
        set
        {
            _isBusy = value;
            OnPropertyChanged("IsBusy");
        }
    }

    protected void OnPropertyChanged(string name)
    {
        if (PropertyChanged == null)
            return;
        PropertyChanged(this,
            new PropertyChangedEventArgs(name))
    }
}

Using MVVM Light you can do way shorter (such syntax probably exists for a while, but I discovered it only recently)

public class MyViewModel : ViewModelBase
{
    public MyViewModel() {}

    private string _isBusy;
    public string IsBusy
    {
        get => _isBusy;
        set { Set(() => IsBusy, ref _isBusy, value) }
    }
}

All property change events will happen under the hood of Set method. Also, Set method returns true when the value changed so you can use it to do additional actions on property change.

private string _isBusy;
public string IsBusy
{
    get => _isBusy;
    set {
        if (Set(() => IsBusy, ref _isBusy, value)) {
        // Do whatever you need on update
        }
    }
}

Update from Chris Jobson:

There are overloads that allow us to omit first argument – propertyExpression. In this case [CallerMemberName] will be used as the property name, so the code will be even shorter. Not bad for 2018 =)

private string _isBusy;
public string IsBusy
{
    get => _isBusy;
    set => Set(ref _isBusy, value);
}

Tip #2.2: Async to Action glue

C# async was designed to be better compatible with old APIs and consume Action or delegate. Also, it is one of the reasons why async void exists in the language, but we should always use async Task in our own code.

Two following casts are valid

Action task = async () => await Task.Yield();
Func task2 = async () => await Task.Yield();

Read “Do async lambdas return Tasks?” to better understand what’s actually going on here. It means that you can pass your async method as Action to RelayCommand.

new RelayCommand(async() => await Download());

TBH, you should use it like this (explanation in the next tip)

new RelayCommand(async() => await Download(), keepTargetAlive:true);

Tip #2.3: Do not use lambdas with RelayCommand

Lambdas as a parameter for RelayCommand is a bad idea unless you know what can go wrong and use the latest version of MvvmLight.

Actually, I have spent almost 2 days of my life to figure out why at some point of time several buttons in our application stopped working, even though all commands defined in the ViewModel are read-only and assigned once in the constructor.

We had simple commands that do some trivial actions on click, so the developer decided to use lambda in command declaration to save space and simplify the code.

new RelayCommand(() => IsBusy = true);

The code looks simple and correct, but RelayCommand under the hood stores only weak reference to the delegate and any GC cycle can recycle local lambda function. So at some point in time (after next cycle of GC) RelayCommand may not find delegate to call and nothing will happen after the click. For a deeper analysis of this behavior, you can read “RelayCommands and WeakFuncs“.

At the time of writing this post, the issues in MvvmLight library were fixed (Using RelayCommand and Messenger (and WeakAction) with closures) and released in version 5.4.1. But fix does not apply by default.

If you really want to use lambdas with RelayCommandMessenger you should manually set keepTargetAlive:true (false by default), but probably better do not use them at all.

new RelayCommand(() => IsBusy = true, keepTargetAlive:true);

P.S. Worth to mention that Laurent Bugnion has the course on Pluralsight “MVVM Light Toolkit Fundamentals” that provides detailed MVVM Light overview.

ASP.NET MVC with Simple Windows Authorization

A lot of enterprises use Active Directory (AD) to manage user accounts and Security Groups to manage access to resources.

So (I think) that there is a common task when you want to create some internal resource that will provide certain functionality for your team, but you do not want to expose your data outside. We can easily enable Windows authentication, however usually we also need to add an authorization(limit access to certain groups)

The task is simple, but I do not know why it is so hard to find manual for this. Steps are as follows:

  • Enable Windows authentication in web.config
  • Add WindowsTokenRoleProvider that transforms all Security Groups to ASP.NET Roles
  • Configure Authorization rules based on roles
  • Disable anonymous authentication for IIS Express.

Changes in Web.config:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  ...
  <system.web>
    ...
    <authentication mode="Windows" />
    <authorization>
      <allow roles="DOMAIN\MyTeam" />
      <deny users="*"/>
    </authorization>
    <roleManager cacheRolesInCookie="false" defaultProvider="WindowsProvider" enabled="true">
      <providers>
        <clear />
        <add name="WindowsProvider" type="System.Web.Security.WindowsTokenRoleProvider" applicationName="/" />
      </providers>
    </roleManager>
  </system.web>
  ...
</configuration>

Changes in project file:

<Project ToolsVersion="12.0" DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
  <PropertyGroup>
    <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
    <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
    ...
    <TargetFrameworkVersion>v4.6.1</TargetFrameworkVersion>
    <UseIISExpress>true</UseIISExpress>
    <IISExpressSSLPort />
    <IISExpressAnonymousAuthentication>disabled</IISExpressAnonymousAuthentication>
    <IISExpressWindowsAuthentication>enabled</IISExpressWindowsAuthentication>
    <IISExpressUseClassicPipelineMode />
    <UseGlobalApplicationHostFile />
    ...
  </PropertyGroup>
  ...

P.S. You can use security groups to restrict access to Controllers/Views based on the roles (AuthorizeAttribute)

About JavaScript memory leaks. Again.

Worth to read, at least, if you are not JS dev

Anton Gorbikov's Blog

Web applications are getting more and more complex from year to year. Couple of years ago nobody cared about the memory leaks on the web pages (yeah, they were really a set of web pages, but not web applications). Even if you forget to clean up some memory – it’s not expected, that user will spend a lot of time on the same page. There were a lot of navigation links, which removed information about the entire page from memory and loaded new page.

But now you cannot relate on this behavior, because now web sites turned into web applications. User loads one small HTML file, one script file and some other stuff (like CSS and images) and that’s it. Making requests from browser to servers user can stay on on the “page” for ages. In the worst scenario you will receive a report from production user: “Oh, your application…

View original post 2,020 more words

How to restore Visual Studio 2015 after the Update 1 (dependency dance)

Update 12/11/2015: Two issues were opened as a result of investigation “Installing the fsharp power tools before installing adding VS2015 update 1 breaks Roslyn” in Visual F# Power Tools repository and “We read some settings from the devenv.exe.config file — devenv.exe.config is not user mutable” in Visual F# repository.

This post is prepared especially to save F# Advent Calendar in English 2015 schedule.

Short version of the fix posted on Stack Overflow.

Note: Described fix is not permanent, VS may reset your changes in devenv.exe.config file after the new extensions install/update.

Yesterday Microsoft released the first update to Visual Studio 2015 that contains some pretty cool features and improvements, but this update has broken “some” machines.

During the first run after the update, you may see errors like this one:

VSexception

or even NullReferenceException when you try to open the list of installed extensions

In order to fix all this stuff you need to check ActivityLog.xml file (c:\Users\{user_name}\AppData\Roaming\Microsoft\VisualStudio\14.0\) and find the exact error message. Most probably, you will see something like this

SetSite failed for package [CSharpPackage][Could not load file or assembly ‘System.Collections.Immutable, Version=1.1.36.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a’ or one of its dependencies. The located assembly’s manifest definition does not match the assembly reference. (Exception from HRESULT: 0x80131040)]:{ at Microsoft.VisualStudio.LanguageServices.Implementation.LanguageService.AbstractPackage`2.Initialize() at Microsoft.VisualStudio.LanguageServices.CSharp.LanguageService.CSharpPackage.Initialize() at Microsoft.VisualStudio.Shell.Package.Microsoft.VisualStudio.Shell.Interop.IVsPackage.SetSite(IServiceProvider sp)}

This error says that bindingRedirect set up incorrectly for VS process. You need to find file devenv.exe.config in c:\Users\{user_name}\AppData\Local\Microsoft\VisualStudio\14.0\ and update it. (Or c:\Program Files (x86)\Microsoft Visual Studio 14.0\Common7\IDE\, depending of location of your devenv.exe file).

For this particular case, you should find rows that setup redirects for System.Collections.Immutable and change newVersion from 1.1.36.0 to 1.1.37.0. Final config should look like this

<dependentAssembly>
  <assemblyIdentity name="System.Collections.Immutable" publicKeyToken="b03f5f7f11d50a3a" culture="neutral"/>
  <bindingRedirect oldVersion="1.0.27.0-1.1.65535.65535" newVersion="1.1.37.0"/>
</dependentAssembly>

After this fix, I was able to load my IDE and setup latest version of Azure SDK 2.8.1 that reset my changes in .config file and I needed to fix it once again.

Everything was OK, until I have tried to open my web project. This time it crashed with the following error in ActiveLog.xml:

SetSite failed for package [JavaScriptWebExtensionsPackage][Could not load file or assembly &apos;Microsoft.VisualStudio.ProjectSystem.V14Only, Version=14.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a&apos; or one of its dependencies. The located assembly&apos;s manifest definition does not match the assembly reference. (Exception from HRESULT: 0x80131040)]:{   at Microsoft.VisualStudio.Html.Package.Utilities.ProjectUtilities.IsImmersiveProject(IVsHierarchy hierarchy)   at Microsoft.VisualStudio.Html.Package.Project.WebProjectServices.IsWebProject(IVsHierarchy hierarchy)   at Microsoft.VisualStudio.Html.Package.Project.WebProjectServices.AdviseProject(IVsHierarchy hierarchy)   at Microsoft.VisualStudio.Html.Package.Project.WebProjectServices.AdviseOpenedProjects(IVsSolution solution)   at Microsoft.VisualStudio.Html.Package.Project.WebProjectServices.HookGlobalEvents()   at Microsoft.VisualStudio.Html.Package.Project.WebProjectServices.Microsoft.VisualStudio.Html.Package.Project.IWebProjectServices.get_OpenedProjects()   at Microsoft.VisualStudio.JavaScript.Web.Extensions.ReferenceAutoSync.ProjectServices.Initialize()   at Microsoft.VisualStudio.JavaScript.Web.Extensions.ReferenceAutoSync.ProjectServices..ctor()   at Microsoft.VisualStudio.JavaScript.Web.Extensions.JavaScriptWebExtensionsPackage.Initialize()   at Microsoft.VisualStudio.Shell.Package.Microsoft.VisualStudio.Shell.Interop.IVsPackage.SetSite(IServiceProvider sp)}

After the search on C:\ drive for Microsoft.VisualStudio.ProjectSystem.V14Only.dll I realized that my machine has version 14.1.0.0 instead of 14.0.0.0. So it looks like we need to add one more redirect in devenv.exe.config.

<dependentAssembly>
  <assemblyIdentity name="Microsoft.VisualStudio.ProjectSystem.V14Only" publicKeyToken="b03f5f7f11d50a3a" culture="neutral"/>
  <bindingRedirect oldVersion="14.0.0.0" newVersion="14.1.0.0"/>
</dependentAssembly>

After these fixes, I have not seen any other errors on my machine (at least for now). I hope that you understand the core idea on how to troubleshoot and fix such errors. So good luck to you and VS team with dependency fighting.

P.S. One more useful advice that can save you time – try to clear Component Model Cache if things start going wrong.

F# Kung Fu #4: Avoid using relative paths in #r directives

Today, Vladimir Makarov faced with quite interesting ‘bug'(very unexpected behavior) of FSI. The initial goal was quite simple – count number of NuGet packages, which have “ASP.NET” in title. As a result, there was created a script that perfectly works in compiled form and crashes in FSI, here it is:

#r "../packages/nuget.core.2.8.2/lib/net40-Client/Nuget.Core.dll"
#r "System.Xml.Linq.dll"

let repository =
    NuGet.PackageRepositoryFactory.Default.CreateRepository
        "https://nuget.org/api/v2"

let aspnet = query {
    for p in repository.GetPackages() do
    where (p.Title.Contains "ASP.NET")
    count
}

When we run this in FSI we got an exception

System.ArgumentException: Incorrect instance type
Parameter name: obj
at Microsoft.FSharp.Quotations.PatternsModule.mkInstanceMethodCall(FSharpExpr obj, MethodInfo minfo, FSharpList`1 args)
at Microsoft.FSharp.Quotations.ExprShapeModule.RebuildShapeCombination(Object shape, FSharpList`1 arguments)
at Microsoft.FSharp.Primitives.Basics.List.map[T,TResult](FSharpFunc`2 mapping, FSharpList`1 x)
at Microsoft.FSharp.Linq.QueryModule.walk@933-1[a](FSharpFunc`2 f, FSharpExpr p)
at Microsoft.FSharp.Linq.QueryModule.EvalNonNestedInner(CanEliminate canElim, FSharpExpr queryProducingSequence)
at Microsoft.FSharp.Linq.QueryModule.EvalNonNestedOuter(CanEliminate canElim, FSharpExpr tm)
at Microsoft.FSharp.Linq.QueryModule.clo@1741-1.Microsoft-FSharp-Linq-ForwardDeclarations-IQueryMethods-Execute[a,b](FSharpExpr`1 )
at <StartupCode$FSI_0002>.$FSI_0002.main@() in D:\Downloads\test.fsx:line 4

When we looked more carefully to FSI output, we saw that:

nuget.core

WAT? FSI lies to us?! First message says that correct version of DLL was referenced, but then FSI loads completely wrong old version installed with ASP.NET. Why? Let’s check what #r actually does…

#r means to reference by dll-path; focusing on name. This means that FSI will use the file name first, looking in the system-wide search path and only then try to use the string after #r as a directory-relative hint

So that means, #r is not reliable way to reference assemblies. You can get into the situation when your script depends on the environment: assemblies in GAC, installed software (like version of ASP.NET) and so on. To avoid this it is better to explicitly specify an assembly search path (#I) and then reference the assembly:

#I "../packages/nuget.core.2.8.2/lib/net40-Client"
#r "Nuget.Core.dll"
#r "System.Xml.Linq.dll"

let repository =
    NuGet.PackageRepositoryFactory.Default.CreateRepository
        "https://nuget.org/api/v2"

let aspnet = query {
    for p in repository.GetPackages() do
    where (p.Title.Contains "ASP.NET")
    count
}

Thanks to Vladimir Makarov for interesting challenge and be careful in your scripts.

F# Kung Fu #3: Exceptions recap.

Define

Usually, you do not need to define custom exceptions during programming in F#. If you do scripting in F#, in the most cases you will be happy with standard .NET exception types and F# built-in helper functions. But when you create a custom library or design complex enterprise software, you will need to use power of .NET exceptions. How you can do it from F#:

// C# style exception (possible, but not recommended)
type MyCsharpException(msg, id:int) =
  inherit System.Exception(msg)
  member this.Id = id

// F# style exceptions
exception MyFsharpSimpleException
exception MyFsharpException of string * int

Note that F# has a special keyword exception for defining “handy” exceptions.

Raise(Throw)

F# provides set of functions (failwith, failwithf, invalidArg, invalidOp, nullArg) that help to raise most common exceptions. They are very convenient especially for F# scripts.

let rnd = System.Random()

let rnd = System.Random()

let raiseException() =
    match rnd.Next(8) with
    | 0 -> failwith "throws a generic System.Exception"
    | 1 -> failwithf "throws a generic Exception with formatted message (%d)" 1
    | 2 -> invalidArg "_" "throws an ArgumentException"
    | 3 -> invalidOp "throws an InvalidOperationException"
    | 4 -> nullArg "throws a NullArgumentException"
    | 5 -> raise <| MyFsharpException("throws a MyFsharpException", 5)
    | 6 -> raise <| MyCsharpException("throws a MyCsharpException", 6)
    | 7 -> assert (2>1)
    | _ -> raise <| System.Exception("Impossible case")

The assert expression is syntactic sugar for System.Diagnostics.Debug.Assert. The assertion is triggered only if the DEBUG compilation symbol is defined.

Try-With/Finally (Catch)

The last step is to catch exceptions and handle them in a proper way.

let catchException() =
    try
        raiseException()
    with
    | Failure(msg) // 'Failure' active pattern catches only Exception objects
     -> printfn "%s" msg
    | MyFsharpException(msg, id)
     -> printfn "Catch F# exceptions using pattern matching"
    | : ? System.ArgumentException as ex
     -> printfn "Invalid argument '%s'" ex.ParamName
    | : ? MyCsharpException | : ? System.InvalidOperationException
     -> printfn "You can handle multiple exceptions at a time"
    | _ as ex
     -> printfn "Log: exception '%s'" (ex.GetType().Name)
        reraise() // re-raise exception

let finaly() =
    try
        catchException()
    finally
        printfn "Now, I am ready for exceptions!"

: ?‘ is a two-symbol operator without space inside.

Note:

  • Failure active pattern catches only System.Exception objects. It is useful to handle exceptions raised by failwith & failwithf functions.
  • Exceptions defined using exception keyword could be handled automatically using pattern matching.
  • F# provides reraise function that helps to raise a current exception one more time. This function can be used only from pattern matching rules of try-with expressions.

If you want to learn more about exceptions, read an amazing The “Expressions and syntax” series from Scott Wlaschin.

F# Kung Fu #2: Custom Numeric Literals.

All of you probably know that F# has a set of predefined numerical literals that allow you to clarify meaning of numbers. For example, number 32 will be interpreted as int by default. If you add ‘L’ suffix – 32L, you will get int64 number. If you add ‘I’ suffix- 32I, you will get System.Numerics.BigInteger number.

But F# has an extensible point here: you can define custom interpretation for suffixes Q, R, Z, I, N, G. The trick is that you need to declare an F# module with a special name and define converters functions. (For example NumericLiteralZ for Z literal).

module NumericLiteralZ =
    let FromZero() = 0
    let FromOne() = 1
    let FromInt32 n =
        let rec sumDigits n acc =
            if (n=0) then acc
            else sumDigits (n/10) (acc+n%10)
        sumDigits n 0
    //let FromInt64 n = ...
    //let FromString s = ...

let x = 11111Z
//val x : int = 5
let y = 123Z
//val y : int = 6

Have fun, but be careful.

Update: Note that you cannot use constants integer literals with suffixes Q, R, Z, I, N, G in pattern matching.